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Figure 1. Our method StyleT2V0 advances video generation capabilities by utilizing: (i) a textual prompt combined with a style image to
capture the ensure stylistic and contextual accuracy across frames (see rows 1, 4), (ii) pose control to ensure dynamic accuracy, (iii) edge
control for enhanced visual definition, and (iv) depth control to enrich spatial perception. The showcased frames illustrate the method’s
robust ability to adaptively integrate enhanced controls while consistently reflecting the artistic intent and textual specifications.

Abstract

Recent advancements in text-to-image diffusion mod-
els have markedly expanded the potential for generating
images based on textual descriptions. Yet, the extension
of these capabilities to video generation poses significant
challenges, particularly in achieving stylistic consistency

across video frames. Traditional approaches often require
extensive training processes and face difficulties in main-
taining a coherent artistic style throughout the sequence,
especially when attempting to emulate a specific style ref-
erenced by an image.

To bridge this gap, we introduce StyleT2V0, a zero-shot
methodology that enables the generation of videos directly
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from textual prompts while ensuring stylistic alignment with
a designated reference image. By integrating shared at-
tention mechanisms within the generation process, our ap-
proach guarantees that each frame not only adheres contex-
tually to the textual description but also maintains stylistic
coherence with the reference image, all without the need for
additional model training. This method represents a signif-
icant step forward in simplifying the video production pro-
cess from textual descriptions, offering a streamlined and
efficient solution for creating stylistically consistent video
content.

1. Introduction
The advent of generative artificial intelligence (AI) has
marked a new era of digital content creation, enabling the
synthesis of complex and creative outputs from simple in-
puts. However, the field of text-to-video generation, despite
its potential, grapples with significant challenges due to the
inherently complex nature of videos and the intricate rela-
tionship between text and visual content. Ensuring tempo-
ral and contextual consistency in video generation remains
a major hurdle, as videos require each frame to be visu-
ally coherent with adjacent frames and aligned with the text
prompt provided. Furthermore, maintaining style consis-
tency across all frames introduces an additional layer of
complexity.

Current text-to-video generation systems often struggle
to capture the desired style effectively. This is partly be-
cause conveying style through textual descriptions lacks the
explicitness and spatial specificity provided by visual refer-
ences. The StyleCrafter [16] introduces several innovative
strategies to overcome existing limitations in video gener-
ation. It leverages a style control adapter, trained with im-
age datasets, to infuse style features from a reference image
into video content. It incorporates a Scale-Adaptive Fusion
Module, which balances text-based content features with
image-based style features. Despite its advanced capabil-
ities, StyleCrafter requires extensive training. It uses a style
control adapter that must be trained with image datasets to
effectively transfer style features from reference images into
the generated video. The method also involves fine-tuning
of the T2V models to improve their temporal dynamics and
ensure consistent style throughout the video, enhancing the
overall quality.

Other techniques in the field utilize various forms of
style transfer technology, embedding style features directly
within the generative process. These methods typically em-
ploy deep learning architectures that integrate style infor-
mation at different layers of the network, allowing for the
dynamic adjustment of style elements during the video gen-
eration process. However, these methods can suffer from
high computational costs and may require significant tun-

ing to balance style preservation with the visual output.
Despite these challenges, there are promising opportuni-

ties for advancements in text-to-video generation technol-
ogy. Leveraging zero-shot learning could potentially enable
models to generate content without prior specific training on
similar tasks, thus enhancing the model’s flexibility and ap-
plicability. Additionally, improving methods for consistent
style information throughout the video could lead to more
cohesive and aesthetically pleasing outputs. In response to
these challenges, we introduce StyleT2V0, a zero-shot and
versatile approach that facilitates the creation of videos in
any desired style using a reference image (see Fig. 1 and
further results). This method offers two key benefits: it en-
hances the styling capabilities of text-to-video (T2V) mod-
els without prior training and ensures a more precise repre-
sentation of the intended style than text descriptions alone,
leading to videos that are not only consistent but also uni-
form in stylistic execution.

The experiments demonstrate that StyleT2V0 success-
fully generates temporally consistent short videos from text
while ensuring stylistic alignment with a specified reference
image. To summarize, our contributions are three-fold:
• A novel attention sharing mechanism to simultaneously

enforce style guidance and ensure frame consistency dur-
ing generation in a zero-shot manner.

• A range of applications demonstrating the effectiveness
of our approach, such as generating videos conditioned
on a style image alongside edge, pose, or depth maps.

• Our approach demonstrates superior performance in
terms of color transformation from style image while pre-
serving the text alignment.

2. Related Work
2.1. Text-to-Image Generation

The field of text-to-image synthesis has witnessed transfor-
mative advancements with the development of sophisticated
models that generate highly realistic and semantically accu-
rate images directly from textual descriptions. Generative
Adversarial Networks (GANs) [6] have been pivotal in pio-
neering early developments in text-to-image generation. In-
novations such as StackGAN [33] and AttnGAN [32] have
laid foundational work by using stacked generative models
and attention mechanisms, respectively, to progressively re-
fine images from coarse-to-fine details based on textual in-
puts. These models excelled in generating visually appeal-
ing images that closely align with the given text descrip-
tions, setting a new benchmark for image quality and text
alignment in early stages. The adoption of transformers,
initially designed for text processing, into image synthesis
marked a significant leap. Models like DALL-E [20] from
OpenAI leveraged transformers to handle complex, abstract
concepts and create images with unprecedented creativity
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from textual prompts. The model’s ability to parse and in-
terpret nuanced text has enabled it to generate images that
are not only high in quality but also rich in context and
imagination. Diffusion models have recently revolutionized
the text-to-image landscape by offering another layer of so-
phistication. Unlike GANs, diffusion models convert noise
into structured images gradually, controlled by the condi-
tioning provided by text. This process has proven to pro-
duce images with exceptional detail and lower rates of ar-
tifacts. GLIDE [18] and Imagen [25] are notable examples
that use diffusion techniques to achieve remarkable levels
of realism and accuracy, outperforming previous method-
ologies in various benchmarks. Advancing further, Latent
Diffusion Models (LDMs) [22] operate by encoding images
in a compressed latent space before applying the diffusion
process, significantly enhancing computational efficiency.
This method maintains the high quality of generated images
while reducing the resource intensity typically associated
with such processes. The use of latent space allows these
models to manage and manipulate higher-resolution images
more effectively, facilitating broader applications.

Advancing further, Latent Diffusion Models (LDMs)
[22] operate by encoding images in a compressed latent
space before applying the diffusion process, significantly
enhancing computational efficiency. This method maintains
the high quality of generated images while reducing the re-
source intensity typically associated with such processes.
The use of latent space allows these models to manage and
manipulate higher-resolution images more effectively, fa-
cilitating broader applications. Building upon the capabil-
ities of LDMs, methodologies such as Diffusion-Enhanced
PatchMatch [7] and StyleAlign [9] have emerged, demon-
strating the adaptability of diffusion models in style transfer.
Diffusion-Enhanced PatchMatch leverages the model’s dif-
fusion properties to ensure coherent style application across
images through targeted style patch matching and blending.
In contrast, StyleAlign employs minimal attention-sharing
mechanisms throughout the diffusion process to produce
style-consistent sets of images, proving effective in main-
taining stylistic consistency without extensive training or
fine-tuning. These advancements underscore the ongoing
evolution and increasing complexity of generative models
in the text-to-image synthesis arena.

2.2. Text-to-Video Generation

Text-to-video generation continues to be a vibrant and chal-
lenging area of research within artificial intelligence, aim-
ing to transform textual descriptions into dynamic visual
narratives. This field has evolved significantly, initially
leveraging generative adversarial networks (GANs) [6] and
vector quantized variational autoencoders (VQ-VAE) [28]
to more advanced methodologies employing transformer-
based architectures and diffusion models.

The utilization of autoregressive transformers has pro-
foundly impacted the development of this technology. Mod-
els such as NUWA [31] and Phenaki [29] are at the fore-
front, with NUWA implementing a 3D transformer encoder-
decoder framework that supports both image and video gen-
eration from text. Phenaki advances this paradigm using
a bidirectional masked transformer that employs a causal
attention mechanism, enabling the synthesis of extended
video sequences from concise text descriptions. These ad-
vancements underscore the versatility of transformers in
handling the complexities of video content generation.

In parallel, diffusion models have brought substantial en-
hancements to the fidelity and coherence of video outputs.
CogVideo [14] extends the principles of the CogView2 [3]
model, incorporating structured multi-frame-rate hierarchi-
cal training strategies to refine the alignment of text and
video. Large-scale diffusion models like those used in
Video Diffusion Models (VDM) [13] and Imagen Video
[12] apply cascading diffusion models tailored for video,
achieving high-resolution outputs that maintain temporal
consistency.

Further expanding the model ecosystem, approaches like
Make-A-Video [26] and Gen-1 [5] explore unsupervised
learning paradigms and content-guided video editing, re-
spectively. Make-A-Video leverages existing text-to-image
architectures, applying them to video synthesis in an un-
supervised manner. Conversely, Gen-1 introduces a novel
framework for video editing that is guided by structural and
content-based descriptions, facilitating refined control over
the generated video content.

The introduction of diffusion transformers has further
revolutionized video generation, leading to solutions like
Latte [17] and Sora [1], which can produce minute-long
videos of high visual quality that faithfully follow human
instructions. These models demonstrate remarkable capa-
bilities in interpreting and visualizing complex scenarios
presented in textual form.

Recent innovations have introduced zero-shot, training-
free methodologies to this discipline. Text2Video-Zero [15]
exemplifies this approach by adapting pre-existing text-
to-image models to generate video sequences without ex-
tensive retraining, significantly reducing the computational
footprint. This model enhances latent codes with motion
dynamics and integrates cross-frame attention, ensuring
temporal consistency across generated video frames from
textual prompts. However, Text2Video-Zero lacks the capa-
bility for style image guidance, thus necessitating the train-
ing of a DreamBooth [24] model for each unique style to fa-
cilitate video generation with the desired stylistic character-
istics. The StyleCrafter [16], on the other hand, introduced
a style control adapter, trained with image datasets, to infuse
style features from a reference image into video content. It
incorporated a Scale-Adaptive Fusion Module, which bal-
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anced text-based content features with image-based style
features. Despite its advanced capabilities, StyleCrafter re-
quires extensive training. It uses a style control adapter
that must be trained with image datasets to effectively trans-
fer style features from reference images into the generated
video. The method also involves fine-tuning of the T2V
models to improve their temporal dynamics and ensure con-
sistent style throughout the video, enhancing the overall
quality.

Unlike the aforementioned methods, StyleT2V0 is en-
tirely training-free, eliminating the necessity for significant
computing resources or multiple GPUs, all while allowing
for style image guidance during the generation process.

3. Preliminaries
3.1. Stable Diffusion (SD)

SD is a diffusion model operating in the latent space of
an autoencoder D(E(·)), namely VQ-GAN [4] or VQ-VAE
[28], where E and D are the corresponding encoder and
decoder, respectively. More precisely if x0 ∈ Rh×w×c is
the latent tensor of an input image Im to the autoencoder,
i.e. x0 = E(Im), diffusion forward process iteratively adds
Gaussian noise to the signal x0:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), t = 1, .., T (1)

where q(xt|xt−1) is the conditional density of xt given
xt−1, and {βt}Tt=1 are hyperparameters. T is chosen to be
as large that the forward process completely destroys the
initial signal x0 resulting in xT ∼ N (0, I). The goal of SD
is then to learn a backward process

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

for t = T, . . . , 1, which allows to generate a valid signal x0

from the standard Gaussian noise xT . To get the final image
generated from xT it remains to pass x0 to the decoder of
the initially chosen autoencoder: Im = D(x0).

After learning the above mentioned backward diffusion
process (see DDPM [11]) one can apply a deterministic
sampling process, called DDIM [27]:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

t
θ(xt)√

αt

)
+√

1− αt−1ϵ
t
θ(xt), t = T, . . . , 1,

(3)

where αt =
∏t

i=1(1− βi) and

ϵtθ(xt) =

√
1− αt

βt
xt +

(1− βt)(1− αt)

βt
µθ(xt, t). (4)

To get a text-to-image synthesis framework, SD guides
the diffusion processes with a textual prompt τ . Particularly

for DDIM sampling, we get:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

t
θ(xt, τ)√

αt

)
+√

1− αt−1ϵ
t
θ(xt, τ), t = T, . . . , 1.

(5)

It is worth noting that in SD, the function ϵtθ(xt, τ) is mod-
eled as a neural network with a UNet-like [23] architecture
composed of convolutional and (self- and cross-) attentional
blocks. xT is called the latent code of the signal x0 and
there is a method [2] to apply a deterministic forward pro-
cess to reconstruct the latent code xT given a signal x0. This
method is known as DDIM inversion. Sometimes for sim-
plicity, we will call xt, t = 1, . . . , T also the latent codes of
the initial signal x0.

3.2. Text2Video-Zero

Our baseline model, which is termed Text2Video-Zero[15],
is a state-of-the-art framework designed to generate videos
directly from textual descriptions without requiring any
fine-tuning or pre-training on video datasets. Text2Video-
Zero harnesses the synergy of motion dynamics and cross-
frame attention mechanisms to forge a path toward seam-
less text-to-video generation, ensuring both temporal con-
sistency and fidelity to the input text description.

The process begins with a randomly sampled latent code
xT
1 for the initial frame, which is then refined using ∆t

DDIM [27] backward steps to derive xT ′

1 , utilizing a pre-
trained Stable Diffusion model (SD) [21]. To incorporate
motion dynamics, a specified motion field is applied across
the video sequence, employing a warping function Wk for
each frame k, which transforms xT ′

1 into xT ′

k . This step is
pivotal as it incorporates the latent codes with the requisite
motion dynamics, thereby dictating the global scene and
camera motion. This ensures temporal consistency across
the background and the overall scene, enhancing the clarity
of the generated video.

Subsequently, the denoised latent codes xT
k for each

frame k are obtained through a forward application of the
DDPM [11] process. This probabilistic method allows for
a greater degree of freedom in managing the motion of ob-
jects within the video, further contributing to a dynamic and
realistic representation of the scene.

The core of Text2Video-Zero’s capability to maintain vi-
sual continuity and object identity lies in its innovative use
of cross-frame attention. By employing keys and values de-
rived from the first frame’s latent code, the model gener-
ates subsequent frames (k = 1, . . . ,m) that not only share
stylistic and narrative elements but also preserve the appear-
ance and identity of foreground objects across the sequence.
This cross-frame attention is crucial for ensuring that each
frame contributes to a cohesive video narrative, reflecting
the text prompt accurately.
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Figure 2. Architectural Overview of the StyleT2V0 Method: This diagram illustrates the integration of the shared attention mechanism
within the Text2Video-Zero framework to enhance style consistency across video sequences. The method employs Adaptive Instance
Normalization (AdaIN) to adjust the query (Q̂i) for each frame Fi by blending style features from a designated reference image (Qr),
ensuring stylistic uniformity and alignment with textual prompts. Keys (K) and values (V ) are also adapted using AdaIN, aligning
them with the style of the reference image while maintaining content continuity from the first frame (K1andV 1). The resultant attention
mechanism applies these style-consistent queries, keys, and values to produce a video sequence where each frame is coherent in both style
and content.

In addition to these mechanisms, Text2Video-Zero op-
tionally applies background smoothing to enhance the vi-
sual quality of the video. Through salient object detection,
a mask Mk is generated for each frame k to identify fore-
ground pixels distinctly. A convex combination of the latent
code xt

1 from the first frame warped to match the current
frame k and the current frame’s latent code xt

k is used to
refine the background.

xt
k = Mk ⊙ xt

k + (1−Mk)⊙
(
αx̂t

k + (1− α)xt
k

)
, (6)

This method ensures that the background remains consis-
tent and unobtrusive, allowing foreground elements to stand
out and maintain narrative focus.

4. Method
In StyleT2V0, we extend the Text2Video-Zero framework
by embedding a novel shared attention mechanism tailored
to enhance style consistency across video sequences. This
approach integrates style features from a designated refer-
ence image, ensuring uniform style across all frames while
aligning with textual prompts. This is achieved through a
specialized shared attention mechanism that utilizes Adap-
tive Instance Normalization (AdaIN) to blend style and con-
tent features across the sequence. The overview of our
method can be found in Fig. 2.

The style image is consistently referenced to dictate the
overarching style, while the content from the first frame
serves as a baseline for content continuity.

For each frame Fi (where i = 1, . . . , n, ), the query Qi

is adjusted using AdaIN to incorporate style features from
the style image:

Q̂i = AdaIN(Qi, Qr), (7)

where Qr is derived from the style image, effectively em-
bedding its stylistic attributes into the current frame’s query.

The keys K and values V are derived using AdaIN to
align with the style properties of the style image, while
maintaining content integrity from the first frame:

K = AdaIN(K1,Kr), V = V1, (8)

where K1 and V1 originate from the first frame, ensuring
that the content features are consistently propagated through
the video sequence. Kr is derived from the style image,
aligning the keys with the desired style.

The attention for each frame Fi is computed to ensure
that both style and content are coherently blended:

Attention(Q̂i,K, V ) = softmax

(
Q̂iK

T

√
dk

)
V (9)

where dk is the dimensionality of the key vectors.
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Figure 3. Results of StyleT2V0: The depicted frames demonstrate consistent styling and narrative fidelity, seamlessly integrating the style
image and text prompt across the video sequence.

In addition to the shared attention mechanism,
StyleT2V0 incorporates ControlNet [34] for detailed
management of pose, edge, and depth attributes, enhancing
the video’s motion dynamics and visual clarity. Pose
control ensures accurate character movements through joint
information, while edge control sharpens scene definitions,
and depth control introduces a layered spatial perception
for immersive depth effects.

5. Experiments

5.1. Implementation Details

Our implementation is based on the publicly available
Text2Video-Zero codebase 1, which we have adapted to in-
tegrate our methodological enhancements. These modifica-
tions include adjustments to the model’s handling of latent

1https : / / github . com / Picsart - AI - Research /
Text2Video-Zero

space dynamics and attention mechanisms. Importantly, our
approach extends the input modality to not only include text
prompts but also reference images, allowing for a richer
context in video generation.

5.2. Qualitative Results

The StyleT2V0 framework showcases a significant ad-
vancement in generating stylistically consistent short videos
directly from textual prompts (see Fig. 3). The framework’s
flexibility was tested across a range of styles and contexts,
showing its capability to adapt to various artistic and re-
alistic styles. Whether translating a simple day-to-day ac-
tivity or a complex, abstract concept into video format,
StyleT2V0 maintained high fidelity to the original style and
context of the reference image. Additionally, our method
can incorporate edge, pose, and depth guidances (see Fig.
??) alongside the text and style image to enhance the vi-
sual coherence and dynamic representation of the videos.
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Figure 4. Comparision of StyleT2V0(our) with StyleCrafter.

In summary, StyleT2V0 not only advances the technical ca-
pabilities of text-to-video synthesis but also enhances the
creative possibilities, allowing users to produce rich, stylis-
tically consistent videos directly from textual descriptions.
This marks a notable progress in the field of generative me-
dia, paving the way for more dynamic and aesthetically co-
herent video content generation.

5.3. Quantitative Results

Testing Dataset. To assess the effectiveness and scalability
of our method, we assembled a test dataset comprising con-
tent prompts and style references. The content prompts con-
sist of recognizable textual descriptions generated by GPT-
4 [19], categorized into four meta-groups: human, animal,
object, and landscape. For style references, we curated a
collection of 10 diverse single-reference stylized images,
encompassing both renowned artworks and generic style
images. This structured dataset allows for a comprehensive
evaluation of our video generation model across a variety of

content and stylistic contexts.
Metrics. For the evaluation of our method, we focus on

three key aspects: style alignment, text-to-video alignment,
and video consistency. To ensure a comprehensive evalu-
ation, we employ a combination of SSIM [30] and CLIP-
based [10] metrics along with MAWE.

To assess style alignment and ensure consistent style
within frames, we use the SSIM (Structural Similarity In-
dex Measure) metric. SSIM evaluates the structural similar-
ity between the style image and the video frames by com-
paring luminance, contrast, and structure. It quantifies how
well the style’s structure and texture are preserved across
frames, ensuring that the video maintains the intended artis-
tic style without significant deviations.

For text-to-video alignment, we employ the CLIP (Con-
trastive Language–Image Pre-Training) text score. CLIP is
a model trained on a large dataset of images and their cor-
responding textual descriptions, allowing it to understand
and compare visual and textual information effectively. The
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Figure 5. Conditional generation with edge control.

CLIP text score measures the similarity between the textual
description provided as input and the visual content of the
generated video. This metric ensures that the video accu-
rately reflects the input text prompt, capturing the intended
actions, objects, and settings described in the text.

Lastly, video consistency is evaluated using the Motion
Aware Warp Error (MAWE), introduced in StreamingT2V
[8]. MAWE measures both the amount of motion and the
optical flow warp error in a generated video, yielding a
low value when the video demonstrates substantial motion
while maintaining consistency throughout. This metric en-
sures that objects, characters, and scenes maintain coher-
ence throughout the video sequence, helping to identify any
abrupt changes or inconsistencies in the visual content that
might disrupt the viewer’s experience.

Together, these metrics—SSIM, CLIP text score, and
MAWE—provide a comprehensive evaluation framework
for our method, ensuring that the generated videos are
stylistically consistent, accurately aligned with the input
text, and temporally coherent across frames.

SSIM ↑ CLIP Text Score ↑ MAWE ↓
StyleCrafter 0.112 0.188 29.043
Only Prompt 0.121 0.174 6.277

StyleT2V0 (Ours) 0.123 0.195 7.958

Table 1. Quanitative comparison with Ablation Study and Style-
Crafter methods. Best performing metrics are highlighted in red.

5.4. Comparison with Existing Models

We compare our method with StyleCrafter[16], a publicly
available text-to-video model enhanced for style fidelity us-
ing a style control adapter. StyleCrafter is evaluated for its
ability to generate stylized videos that align closely with
user-provided reference images, making it a relevant bench-
mark for our approach.

5.4.1 Quantitative Comparison

We provide a detailed quantitative comparison Table 1 be-
tween our method and the StyleCrafter method using three
evaluation metrics: SSIM (Structural Similarity Index Mea-
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Figure 6. Conditional generation with depth control.

Style Alignment Text Alignment Overall Quality
StyleCrafter 57.14% 22.73% 28.88%

StyleT2V0 (Ours) 42.86% 77.27% 71.12%

Table 2. Human Evaluation results for model comparison.

sure), CLIP Text Score, and MAWE (Mean Absolute Warp-
ing Error). Our results show that StyleT2V0 consistently
outperforms StyleCrafter across all metrics. StyleT2V0
demonstrates superior structural integrity, better alignment
with textual prompts, and significantly improved temporal
consistency with less warping. Overall, StyleT2V0 proves
to be a more effective method for style-aligned video gen-
eration.

We also conducted a human evaluation for the model
comparison between our method and StyleCrafter. The
evaluation focused on three main criteria: Style Alignment,
Text Alignment, and Overall Quality. The specific ques-
tions asked to the evaluators were:
1. Which option has better style alignment?
2. Which option has better text alignment?

3. Which option is better overall?
The quantitative results of this evaluation are detailed in Ta-
ble 2

The results indicate that while StyleCrafter performs bet-
ter in style alignment, our method significantly outperforms
it in text alignment and overall quality. This suggests that
our approach is more effective in maintaining the alignment
with the text and providing a better overall outcome, which
is crucial for practical applications where both style and
content accuracy are essential.

5.4.2 Qualitative Comparison

We present several results of our method in Fig. 8. and pro-
vide a qualitative comparison to StyleCrafter [16]. As can
be seen from the results, there are cases when the style-
video alignment is better preserved in StyleCrafter, but text-
video alignment is better in our method, and vice versa.
However, in general, it can be noted that our method bet-
ter preserves both style-video and text-video alignment.

For example, in the video with the prompt ”A horse gal-
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Figure 7. Conditional generation with pose control.

loping on a street” and the style image ”Van Gogh’s Starry
Night,” the style features are better preserved in our method.
In the example with the prompt ”A dog running along the
beach” with the style image ”Minas Avetisyan’s Jajur,” even
though the colors and features from the style image seem to
be better aligned in StyleCrafter, the objects and motions
described in the textual prompt are not noticeable in the
generated video, making it difficult to discern the dog in
the video frames. This pattern is similarly observed in the
other two examples provided.

5.5. Ablation Study

In our ablation study, we evaluated the model’s performance
by embedding style descriptions directly within the text
prompts and by using both the style description and the
style image, as opposed to leveraging an external style im-
age alone. The first setup was designed to test the model’s
capability to infer and render stylistic elements based solely
on textual descriptions, particularly assessing its effective-
ness with recognizable and easily describable styles. We
also experimented with using both the style image and style
guidance in the text prompt. However, this approach did not

yield notable results beyond those achieved with the style
image alone. Our findings indicate that while the model
can interpret and generate videos aligned with well-known
styles described in the text, it faces considerable challenges
when tasked with personal or obscure styles (see Figure 9).
These less recognizable or describable styles are difficult
for the model to accurately capture and reproduce with-
out visual cues. This underscores the critical role of direct
style inputs in enhancing the model’s performance, partic-
ularly in applications where unique or customized stylistic
fidelity is paramount. Overall, the ablation study highlights
the importance of style representation in the model’s input,
demonstrating that while text-based style descriptions can
suffice for general styles, they are insufficient for captur-
ing the full spectrum of stylistic nuances required for high-
quality, personalized video generation. Quantitative results
can be found in Table 1.

6. Conclusion

In this study, we introduced StyleT2V0, a zero-shot frame-
work for generating stylistically consistent videos from tex-
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Figure 8. Comparision of StyleT2V0(our) with StyleCrafter.

tual prompts, aligned with specified reference images with-
out the need for retraining. Our approach leverages shared
attention mechanisms, ensuring that each video frame not
only adheres to the contextual details of the text but also
harmonizes with the aesthetic qualities of the reference im-
age. Furthermore, the integration of pose, edge, and depth
controls allows for precise manipulation of dynamic move-
ment, visual sharpness, and spatial depth, enhancing the ex-
pressiveness and realism of the generated videos.

The experimental results validate StyleT2V0’s ability to
produce videos that are temporally consistent and stylisti-
cally faithful to both the textual prompts and the visual style
of the reference images. Additionally, the adaptability to
various control settings demonstrates the framework’s ver-
satility and its potential application across various domains
such as digital marketing and personalized media produc-
tion, significantly reducing the need for computational re-
sources typically associated with training advanced video
generation models.
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